
SMG - State Machine Generator

Kevin Quick
quick@null.net

Version 1.7
16 Apr 2002

Copyright c©2001-2002

Abstract

The SMG utility can be used to scan an input file
for specific directives that describe a State Machine
(States, Events, Transitions, and associated Code
segments) and generate several different outputs: C
code to implement that State Machine, Promela code
to implement a formal verification of the State Ma-
chine using Spin, and a graphical representation of
that State Machine for analytical purposes. In me-
chanical terms, the SMG may be thought of as a
specific-purpose C preprocessor.

The SMG utility may be obtained from:
http://smg.sf.net/

Contents

1 Background 2
1.1 Tunnel Vision 2
1.2 Asynchronous Event Handling 2

1.2.1 EDSM Methodology 3
1.3 Non-blocking Operations 3

2 The SMG Solution 4
2.0.1 Visual Analysis 4
2.0.2 Functional Verification 4

2.1 SMG Development Cycle 5
2.2 C Data Structures and Functions . . . 5

3 SMG Directives Overview 6
3.1 Common SMG Directives 6
3.2 SMG Directive Keywords 6
3.3 SMG Wildcards 11
3.4 SMG Syntax Version 11

4 SMG Specification Requirements 11

5 SMG Usage 12
5.1 SMG Command Line Arguments . . . 12
5.2 Support Functions 14
5.3 Run-Time Tracing 14

6 SMG Libraries 15
6.1 Event Interface Background 15
6.2 SMG Library Implementation 17
6.3 Library Synthesized Events 18
6.4 SMG Library Requirements 19

7 SMG Examples 19
7.1 File Example 1 19

7.1.1 Building the Example 19
7.2 Unmorse Example 20

7.2.1 Building the Example 20

8 SMG Maintenance 20
8.1 Dependencies 20

8.1.1 Python 20
8.1.2 GraphViz 20
8.1.3 Spin 20
8.1.4 Interactions 21

8.2 SMG License 21
8.3 SMG Change Log 21

1

1 Background

1.1 Tunnel Vision

Modern programming techniques are often oriented
around a procedural language such as C or a similarly
structured object-oriented implementation. When
developing software using these languages, the preva-
lent coding methodology is to design a set of instruc-
tions and functions that will perform the intended
sequence of tasks, using a top-down approach. This
sequence of tasks is identified as the primary objec-
tive of the program being developed. This program-
ming methodology is referred to as task-oriented
programming.

Frequently, however, the attention to developing
support for portions of the code not related to the
primary objective is diminished or in some cases non-
existent. This results in unhandled or badly handled
error paths and an inflexibility of the code regarding
changes or deviations in input or operating environ-
ment. The top-down approach can exacerbate this
issue as the focus narrows as details are introduced,
thereby causing those details to be developed with
primarily local concerns.

Additionally complicating this programming
methodology is the attempt to introduce multi-
threaded scheduling to improve the overall respon-
siveness of the program to multiple simultaneous
inputs. When introducing threading significant
attention must be provided to properly protecting
common data structures and maintaining each
thread relative to all other threads and the overall
program state.

Finally, validation of the resulting code is left to a
rote process of verifying functionality and output of
the code when presented with sample sets of input;
coverage tools attempt to verify that most of the writ-
ten code has been executed, but this does not neces-
sarily mean that the full range of input or sequencing
has been tested in the process. A technique known
as modelling and formal verification can be used to
abstract the functionality of the code, but this is usu-
ally only used in the architectural and early design
phases; the resemblance of the final code to the for-
mal verification model is tenuous at best and often

minimal. Developers tend to handle unexpected in-
put or events as “bugs” by providing local fixes to
ensure that their code does not fail when these oc-
cur, but without consideration of how the system as
a whole should properly handle those situations and
rarely by returning to and updating the formal veri-
fication model.

1.2 Asynchronous Event Handling

Another one of the frequent challenges in developing
computer software is implementing and maintaining
code that can fully manage an operation that is sub-
ject to asynchronous events. Asynchronous events
can take many forms, including: user-input, opera-
tion completion notifications, interrupts, and opera-
tion requests. In general, an asynchronous event can
occur at any time and the software must be capable
of determining what the appropriate response to that
event is at that point in time.

These event-oriented environments are found in
most non-computation oriented code and are espe-
cially prevalent in: Internet Servers, Device Drivers,
and GUI implementations.

The task-oriented coding style discussed previously
makes it difficult to anticipate and handle exceptions
to the sequence of tasks which are introduced by
Asynchronous Events and also leads to assumptions
regarding when events will occur and what types of
events will occur at various delivery points. Often
ignored or lightly-addressed is the importance of de-
termining the appropriate response to all types of
events that may occur at each point where they may
occur.

One technique commonly used in applications writ-
ten for an Asynchronous Event environment is to de-
clare an event queue onto which all events are placed
in order of occurrence. The code then removes an
event from the head of the queue, processes that event
in a task-oriented manner until the event has been
completely handled, and then returns to the queue
to obtain the next event. This algorithm may be
useful in some circumstances but its appropriateness
is often invalid when events cannot be queued, when
events must be prioritized, and when some events
may interrupt other events.

2

1.2.1 EDSM Methodology

An alternative coding style used in these situations
is the Event-Driven State Machine or EDSM
methodology1. In this methodology, events are typ-
ically delivered to a common entry point and then
a specific function or switch statement is invoked
based on the current state or the event. Once in that
code has been invoked, the other parameter (entry
or state) is examined to select the code to execute
for that state/event combination. While this style is
more flexible in terms of handling unexpected events
it is more arduous to develop code in this style due
to the mechanics of reproducing state and event se-
lection code throughout the code and the loss of the
“flow” perspective for the primary sequence of tasks.

Some software designs do implement an EDSM
methodology, but unfortunately, most of the software
in these implementations focuses on the expected se-
quence of operations only; it’s frequently the case
that not all events are handled at each event-delivery
juncture in the code.

Furthermore, in situations where state machines
are implemented in the software, the completeness of
the state machine tends to logarithmically increase
the complexity and obscurity of that state machine,
making them hard to understand and maintain. Each
possible state has to consider the potential occurrence
of an ever-increasing number of events, and the ad-
dition of each state causes an event-number of new
paths through the state machine.

This type of code is difficult to maintain, especially
for developers introduced to the code after it is writ-
ten. State machine code is often spread throughout
the body of the main code, making it hard to under-
stand the entirety of the state machine. Furthermore,
the state machine code has significant side effects;
any change to a state machine’s structure (i.e. adding
a new state or changing the response to an event) will
significantly impact code executing to handle future
events. Understanding, predicting, and assessing the
validity of any changes to the state machine quickly
becomes a monumental task as the size of the state

1The State Machine described in the document is a Finite
Deterministic Mealy Machine, also referred to as a Determin-
istic Finite Automata or DFA.

machine grows.
A formal verification model is a highly useful tool

to properly evaluate and manage additions (states or
events) to this type of code, but again, since the for-
mal verification model is often retired or divergent
at this point in development the opportunity is not
often available. Some institutions even separate the
coding and formal verification modelling into sepa-
rate groups, the former being handled by architects
and the latter by developers. Sometimes the devel-
opers are not even aware of the existence of formal
verification models.

1.3 Non-blocking Operations

Another more recent advancement facing many im-
plementations is the introduction of non-blocking
function calls for performing various asynchronous
tasks such as: I/O operations and remote procedure
calls (RPC) found in distributed environments. In
these situations, the program’s initial request is not
completed when the request call completes; instead
the request is processed in parallel or at some later
point in time and when completed, the initial pro-
gram is notified of that completion (usually by invo-
cation of a callback function).

This complicates the normally task-oriented
methodology in the following ways:

1. The task-oriented flow is broken up into several
different “chunks” of code, split by the need to
await a completion indication after performing a
non-blocking request.

2. The potential for other events to occur while
waiting for or instead of the requested opera-
tion, with those events being delivered before or
instead of the primary operation’s completion in-
dication.

3. The potential for request re-entrancy, allowing
the program to handle a new request while wait-
ing for an interim non-blocking operation to
complete for a previous request. While this
tends to increase the overall efficiency of the pro-
gram, it significantly affects the management of

3

common data and the management of this now-
pipelined implementation.

4. The potential for the non-blocking request to sig-
nal completion at any point after the request call
is made, possibly even before the request call re-
turns to the calling process.

These complications require significant additional
care in properly and efficiently implementing appli-
cations for this type of environment.

2 The SMG Solution

The proposed approach to handling these issues
is to attempt to reconcile the EDSM methodology
with the more customary task-oriented programming
styles. In order to do this, we seek to automate the
mechanics of EDSM and re-introduce the conceptual
perspective of task-oriented coding styles. This is
done by beginning with the EDSM methodology and
making the following set of observations and changes.

To facilitate this approach, the SMG tool has been
developed. Using the SMG tool, the developer de-
scribes the state machine by a set of SMG directives
interspersed with the program’s normal C code.

The SMG directives are intended to be more suc-
cinct in describing the state machine than the corre-
sponding C code, thereby allowing the state machine
to be more easily recognized and understood even at
the input specification level. The SMG directives also
allow default functionality to be specified and allows
the state machine to be more “naturally” described
in parallel to the task-oriented code segments.

Once the code (including SMG directives) has been
developed, the code is passed through the State Ma-
chine Generator (SMG) as a preprocessing stage. The
SMG utility converts the SMG directives into C code
which implements the described state machine, allow-
ing the result to be passed to the C compiler as a com-
bination of the state machine and the task-oriented
code, providing a complete functional solution.

2.0.1 Visual Analysis

The SMG utility also produces a description of the
state machine that may be passed to the GraphViz

utility to obtain a graphical representation of the
state machine. The graphical representation allows
easy interpretation and maintenance of the state ma-
chine.

The graphical representation shows the various
states as nodes on the graphs and labels the arcs that
connect those nodes with the names of the events
that cause that transition. The arc labels also indi-
cate which code objects are executed before and after
the event causes the actual state to change.

Expected transitions are represented by thick arcs,
making it easy to follow the normal code flow and
differentiated from unusual or error handling transi-
tions.

SMG will also automatically generate an error state
if there are any states wherein the result of an event
is not defined explicitly by SMG directives. The cor-
responding C code generated will cause a runtime
error call to a programmer-supplied error routine if
this undefined event transition occurs). All transi-
tions to this error state will be labelled as errors for
easy analysis; final versions of the code should not
contain any undefined transitions of this type.

SMG will also group states in order to simplify the
diagram. For example, if a group of 5 states have
normal transitions to other states, but they all tran-
sition to an error state when a particular event oc-
curs, SMG will assign those 5 states to a group and
separately indicate that the group transitions to the
error state on that event. This grouping is performed
automatically.

2.0.2 Functional Verification

The third SMG output is a SPIN/Promela model of
the state machine. This model is automatically ex-
tracted from the states, events, and transitions de-
fined by the SMG directives. It is therefore capable of
describing the overall functionality of the system for
SPIN functional verification without any additional
input from the developer.

To supplement and refine the functional verifica-
tion process, standard Promela code can be identified
in the input file by bracketing SMG directives. The
SMG utility will then direct this Promela code into
the appropriate locations of the generated model as

4

a parallel to the C code for the same transitions. In
this way, both the overall functionality and detailed
modelling code can be maintained in the SMG in-
put file along with the corresponding C code. Thus,
when additional states or events must be considered,
or when one or more transitions must be redefined,
the Promela model is correspondingly adjusted for
continued formal verification.

As with the graphical and C outputs, the emit-
ted Promela code generates assertions for undefined
transitions, causing them to be flagged during formal
verification (or they can be disabled to validate the
currently defined subset of the application).

2.1 SMG Development Cycle

SMG development is done by designing C code mod-
ules as in a normal development operation and imple-
menting SMG directives in one or more of the mod-
ules. Modules containing SMG directives typically
have a “.sm” suffix to distinguish them from nor-
mal “.c” files (and so that SMG can generate a .c
from the .sm). The SMG directives can appear exlu-
sively in a file themselves or then can be intermixed
throughout the C code to the degree desired by the
coding style being used.

The SMG directives also establish the States and
Events that can occur, and optionally any en-
try points into the code that represent Events.
The definitions of these States, Events, and entry
points are output by SMG into a header include file
(xxx_smdefs.h). All modules needing to use a State
or Event value or make other references to the state
machine can include this file to obtain the appropri-
ate external definitions.

Once the C code and SMG directives have been
written, the smg utility should be run on the .sm in-
put files. The graphical state machine output should
be examined to visually verify the implementation,
followed by formal verification using SPIN and the
output Promela model. Once the state machine has
been formally verified, the output C code should be
compiled by the C compiler and the linker for all C
source files (some of which may have been output by
the smg utility from .sm files). All errors during the
development cycle are resolved in the input .sm file

rather than making modifications to interim files; the
resulting SMG model is therefore fully complete and
functional.

2.2 C Data Structures and Functions

In order to implement the EDSM methodology, SMG
attempts to make minimal assumptions about the
programming environment in which it will generate
the state machine.

SMG will automatically provide C definitions for
the states and events described in its directives.
There are only two required C data types and based
on the external interface for the program, and one re-
quired C function (the error handling function). The
programmer can optionally define the syntax of event
delivery points within the code with additional di-
rectives and C declarations, but this is not required.
SMG does assume that if the event delivery points
are not specified that the C program will provide the
event-specific interface and invoke the state machine
with an indication of the underlying event type.

The first required C data type must be a struc-
ture and is the SM_OBJ structure. This is as-
sumed to be an instance of a structure that is
global to the current task. This structure may con-
tain anything that the programmer desires to im-
plement but it must also contain the following field:
<SM_NAME>_state_t sm_state; where <SM_NAME> is
the declared name of the state machine.2 It is recom-
mended that the SMG-related code not refer to any
global writable data outside of the SM_OBJ structure
although it is possible to deviate from this under cer-
tain circumstances.

The second required C data type is the SM_EVT
type. This data type is assumed to represent any and
all information related to the current event-initiated
task. A common implementation is for the program-
mer to maintain a pool of SM_EVT structures which
are used one-by-one as primary events arrive. The
SM_EVT type may be any valid C data type; it is used
to maintain the task-oriented context for the series

2Multiple state machines may be defined in the same .sm

file, and they may even share a common SM_OBJ data structure;
the use of <SM_NAME> in all relavent state machine interfaces
keeps the state machines distinct and separate.

5

. . .
C code
SM directives. . .

.smH
HHH -SMG

-

-

-

-

_smdefs.h -

-
-C compiler

.exe
.c

.pml -spin Formal Verification Report

.dot -GraphViz
.ps

of secondary events that are initiated by the primary
event. The SMG code will not use the SM_EVT vari-
able directly but will pass the value of this variable
from the event-initiated state machine entry to the
selected state/event handling code.3

3 SMG Directives Overview

SMG directives are designed for simplicity in both
parsing and specification. Although the user can
choose to design a preprocessing stage to preceed the
SMG operation (e.g. m4), SMG directives are simply
presented and designed to be unambiguously distin-
guishable from the C code into which they are placed.

3.1 Common SMG Directives

The list of directives allows for significant flexibility
in how the state machine is described and where the
various operations occur. Some of these capabilities
are only needed for special situations, and some are
dependent on the way in which the state machine
is implemented. Only the most basic directives are
needed to identify a state machine and all other di-
rectives may be introduced only as needed when the
basic directives are insufficient. The basic directives
are listed below:

SM_NAME TRANS
SM_OBJ SM_EVT
CODE CODE_{ CODE_}

The reader is advised to attend to this subset of
directives initially and to review the additional key-

3Because the SM_EVT variable is not actually used by
SMG-generated code, the associated variable may be unused
throughout but it still must be a valid data type.

words presented in the SMG Guide once basic famil-
iarity with SMG is attained.

3.2 SMG Directive Keywords

This section describes all supported SMG keywords.
As noted previously, the initial review should focus
on the subset of common keywords, leaving the re-
maining keywords for more esoteric evaluation.

The syntax of SMG Directives is described in Fig-
ure 1. In the figure, <xxx> represents a user-supplied
word, and <xxx>... represents one or more user-
supplied words. Square braces (’[’ and ’]’) enclose
optional portions of the directive and are not actu-
ally present in the directive. There are no restrictions
on <xxx> words except those noted here and except-
ing whitespace. Some <xxx> words must be valid C
identifiers: <state-machine-name>, <state-name>,
and <event-name>.

All SMG directives are line oriented, must be con-
tained on a single line, and must start with the SMG
directive keyword at the first character on the line.
The remainder of the line contains the arguments and
values for the SMG directive as whitespace separated
words, up to the end of the line; SMG directives do
not support line-continuation.

SM_NAME — Specifies the start of a State Machine of
the specified name. An input .sm file(set) may
contain multiple state machines. The SM_NAME
identifies the state machine to which all of the
following state machine directives apply until a
new SM_NAME state machine declaration is read.

SM_DESC — Descriptive text describing the purpose
of the State Machine

SM_OBJ — Type of the C object representing the
instantiation of the State Machine. This ob-

6

SM_NAME <state-machine-name>

SM_DESC <description>...

SM_OBJ <C-type>...

SM_EVT <C-type>...

SM_INCL <filename>

SM_DEF <context-name>
SM_IF <context-name>
SM_ELSE <context-name>
SM_END <context-name>

STATE <state-name> [<description>...]

INIT_STATE <state-name> [<description>...]

ST_DESC <description>...

EVENT <event-name> [<entry-code-tag> <setup-code-tag> [<description...>]]

EV_DESC <description>...

TRANS <current-state> <event> <new-state> [[<pre-code>] <post-code>]
TRANS+ <current-state> <event> <new-state> [[<pre-code>] <post-code>]
TRANS= <current-state> <event> <new-state> [[<pre-code>] <post-code>]

<comment>...

CODE <code-tag> <code>...

CODE_{ <code-tag>
CODE_}

PROMELA_{ <code-tag>|HEADER|INIT
PROMELA_}

Figure 1: SMG Directive Syntax

7

ject persists across the lifetime of the state ma-
chine and typically contains user information
needed by the code containing the state machine
and must include an sm_state field used by the
SMG-output code to maintain the current state
of the code.

SM_EVT — Type of the C object associated with an
event. All information relative to the current
event (except the event code itself) must be con-
tained in this object. The body of the SMG-
generated state machine will only have access to
the SM_OBJ and SM_EVT variables.

SM_INCL — Includes another file. This operates in
a similar manner to the #include preprocessor
directive in C except that it works during the
SMG preprocessing stage rather than the C pre-
processing stage. Additionally, the optional sec-
ond parameter specifies the version of the file to
be included. The SM_INCL directive will look
for the specified file based on a search path. The
search path looks in the following locations in
the order specified:

1. The current directory
/usr/local/lib/SMG/*-vN

2. This location is searched only if the op-
tional second argument is specified on the
SM_INCL line specifying the version of the
interface. The N in the above path is re-
placed with the version number specified in
the second argument and the * specifies a
wildcard of all entries. Thus, if the optional
version specified is “23”, the SM_INCL will
search in all of the /usr/local/lib/*-v23 di-
rectories.

/usr/local/lib/SMG/*

3. All subdirectories of the above are checked.
/usr/local/lib/SMG

4.

SM_DEF — Defines a directive for use in the SM_IF
/SM_ELSE /SM_END statements. The SM_DEF
is roughly equivalent to a C statement like
the directive #define <context-name>, except

that the SM versions are parsed by SMG and
#defines are parsed by the C preprocessing
stage of the compiler, which follows SMG pars-
ing. One way to negate this is to make it an
SMG comment (see below). This is a global di-
rective and is not related to any specific state
machine or other context.

SM_IF — Specifies the beginning of a block of code
that is only included if the SM_DEF statement
for the corresponding <context-name> has been
seen. This is a global directive and is not related
to any specific state machine or other context.
Blocks of code demarcated by SM_IF /SM_END
statements may be nested, even within the same
<context-name>. Each SM_END statement exits
the corresponding SM_IF context but no others.
Context nesting is allowed but scope must be
maintained.

SM_ELSE — Specifies the beginning of an alter-
nate block of code that is only included if
the SM_DEF statement for the corresponding
<context-name> has not been seen.

SM_END — Specifies the end of a block of statements
(C and SMG) that was previously identified with
the SM_IF statement.

STATE — Defines a state and optionally a descrip-
tion of that state. This directive is optional;
states are deduced by the SMG from TRANS di-
rectives as needed.

INIT_STATE — Specifies the initialization for a
state machine that is initialized at instantiation.
There may only be one of these for a state ma-
chine although it may appear in place of or with
a corresponding STATE directive for the same
state. State machines instantiated in this way
MUST have zeroed contents when instantiated;
since instantiation is external to the SMG gen-
erated code, the developer must insure that the
new state machine, however created, is zero’ed
(i.e. memset(sm_obj, 0, sizeof(sm_obj)))
before any events are delivered to that state ma-
chine.

8

State machines which are not initialized at in-
stantiation must be explicitly initialized with the
<name>_State_Machine_Init operation before
any events are delivered to that state machine.

ST_DESC — Provides additional description for the
most recently declared STATE .

EVENT — Defines an event, optional entry point dec-
laration, optional input variable preprocessing,
and an optional description of the event. As with
the STATE directive, the EVENT directive is op-
tional if no entry point or preprocessing must be
defined and events will be deduced as needed.

Most uses of the EVENT keyword will specify only
the <event_name>.

In situations where an event entry point is
automatically defined (e.g. an Event Li-
brary), the optional <entry-code-tag> and
<setup-code-tag> specify the code to be gen-
erated for the event handling entry point. The
<setup-code-tag> should not be defined (i.e.
not --) unless the <entry-code-tag> is also
defined (in other words, if <entry-code-tag>
is “--” then <setup-code-tag> must also be
“--”).

EV_DESC — Provides additional description for the
most recently declared EVENT .

TRANS — Defines a transaction. Specifies the han-
dling of an Event for a specific current state in
terms of the new state to go to when the event is
received, along with any code to execute either
before or after moving to the new state. The
TRANS statement is the principle specification for
SMG input.

The <new-state> may be “--” to indicate that
there is no state change associated with this
event in the current state.

The <pre-code-tag> and/or the
<post-code-tag> elements may be “--”
to indicate that there is no pre-state-change or
post-state-change code to execute, respectively.

The <current-state> may be “*” to indicate
that the transaction is a default transaction and
applies to all states.

TRANS+ — A special form of the TRANS direc-
tive. This directive indicates that the associ-
ated transaction information is defining “group”
code that is performed in addition to the normal
transaction. There must only be one TRANS for
a current-state/event/destination-state transac-
tion, but there may be zero or more TRANS+ (in
addition to the TRANS) for that same transaction
that specify additional code. This directive is es-
pecially useful for specifying default code that is
associated with an event that occurs in any state
(using a wildcard specifier for the current-state
as described below).

Another way of describing the difference between
TRANS and TRANS+ is that a multiply defined
state transition error will only be detected for
TRANS directives.

The <new-state>, <pre-code-tag>,
<post-code-tag>, and <current-state>
fields may have the special values described in
the TRANS directive and have the same effect.

TRANS= — Another special form of the TRANS direc-
tive. This form is used to indicate the normal or
expected transition in the current state (i.e. the
primary code path). When the event described
in this TRANS= directive has corresponding en-
try point and preprocessing code directives, the
SMG preprocessor outputs specific code test-
ing for and implementing this transaction before
passing into the more general transaction pro-
cessing routine, thereby increasing the efficiency
and performance of the “common path” code.

The <new-state>, <pre-code-tag>,
<post-code-tag>, and <current-state>
fields may have the special values described in
the TRANS directive and have the same effect.

— When placed at the start of a line, this spec-
ifies that the line is an SMG comment; SMG
comments will not be reproduced in the output
C code.

9

CODE — Specifies a line of code and its associated
tag. All code referenced by EVENT and TRANS di-
rectives is referred to by an associated code tag;
the CODE directive specifies the actual C code
that is associated with that tag.

Within the C code associated with the CODE tag,
special keywords will be recognized and appro-
priate substitutions will be made in the output
C code generated. All code-internal keywords
are of the form “_/xxx” and may be one of the
following:

_/OBJ — Substitute the name of the SM_OBJ
-typed variable.

_/EVT — Substitute the name of the SM_EVT
-typed variable

_/NAME — Substitute the name of the current
state machine being defined.

_/<STATE> — Specifies that code should be in-
serted to set the state to the specified value.
This is used for situations where the des-
tination state cannot be determined solely
from the current state and event. The code
which is specified for this type of TRANS
operation must programmatically make

the determination of the appropriate tar-
get state and then set that state using the
“_/<STATE>” keyword.

_/<EVENT> — Specifies that the associated
event should be delivered to the state ma-
chine. This event is delivered IMMEDI-
ATELY to the state machine, and is compa-
rable to a recursive invocation of the state
machine. It is possible to defer the delivery
of these events to the end of the handling
for the current event using a command-line
flag, in which case they will be delivered
in the order they were generated after all
tagged code associated with the event has
been executed.
If it is desireable to queue events to a state
machine instead, for both external event de-
liveries and internally generated events, a
separate mechanism must be provided by

the user to implement this queueing. These
directives should be used CAREFULLY.

CODE_{ — Specifies the start of a multi-line section
of code and its associated tag. This directive
is special in that the code associated with this
directive spans multiple lines, up to the closure
directive. Other than the multi-line aspect, this
directive is exactly like the CODE directive, in-
cluding the keyword substitution activities.

CODE_} — Specifies the end of a multi-line section
of code started by the CODE_{ directive.

PROMELA_{ — Specifies the start of a multi-line
Promela code section. Promela is a modeling
language that may be used with the Spin utility
to model and validate a state machine. Promela
code is output to the .pml file rather than the .c
and .h files for corresponding CODE segments.

Special code tags of HEADER and INIT may be
used to specify Promela code that should be out-
put to the header or the end (init) of the Promela
file. One common initialization function is to de-
clare the Promela channel used to deliver events
to the state machine and then run the state ma-
chine, passing that channel. The channel mes-
sages should be declared as follows:

Where the first mtype should be either
INITIALIZE_SM or SM_EVENT as appropriate, and
the second mtype should be the initial state or
the event name, respective to the first mtype.
The depth of the channel should always be
zero to accurately model the immediate delivery
mechanism of the state machine; queued event
delivery should use a separate queueing process
rather than simply expanding the channel depth
to provide the proper semantics.

See the output of the examples for more infor-
mation.

PROMELA_} — Specifies the end of a multi-line
Promela code section.

10

3.3 SMG Wildcards

When specifying the arguments for the SMG direc-
tives described above, there are special wildcards that
are recognized by the SMG preprocessor that may be
used in place of a more customary value for that ar-
gument:

* — Wildcard argument. This is typically useable
in place of a state name in a TRANS direc-
tive, indicating that any and all states apply for
that transition. This can be useful in specifying
the “default” transition for an event, and may
be overridden for specific states by subsequent
TRANS directives that do not use the wildcard.

-- — No-action argument. This indicates that
nothing should occur for the corresponding ar-
gument. For example, when used in place of the
new_state name in the TRANS statement, this
indicates that the event does not change the cur-
rent state. When used in place of a code tag, it
indicates that there is no code to be executed.

3.4 SMG Syntax Version

Currently the SMG directives syntax is unchanged
from the original publicly distributed version. In
the future, the SMG directives syntax might need
to change to accomodate additions, changes, and re-
movals from the current syntax. To allow .sm files
to be written to conform to multiple syntax forms
and/or validate the needed syntax to interpret the
current file, SMG automatically generates one or
more context definitions describing the syntax inter-
pretation used by that smg utility.

This automatically generated context definition
may be checked with the SM_IF directive, even
though no SM_DEF directive explicitly defined that
context.

Syntax extensions and additions are represented
by additional automatically generated contexts de-
fined simultaneously with the original syntax defini-
tion where the new syntax is backward-compatible
with the original syntax. Syntactic changes incom-
patible with previous versions will be represented by

a newly unique automatic context definition and the
lack of previous definitions.

Also note that the syntax versioning supported in
this manner is independent of the SMG utility ver-
sion; multiple SMG utility versions might support
identical syntax forms.

Context Description
SMG_SYNTAX_A Original SMG syntax

4 SMG Specification Require-
ments

In addition to the SMG directives described above,
there are a few requirements for successfully integrat-
ing the generated state machine C code into the rest
of the software module:

1. The SM_OBJ structure must contain a field
(sm_state) that can be used by SMG to main-
tain the current state of the state machine. This
field should NEVER be directly accessed by the
C code.

2. When a run-time error occurs, the generated
state machine C code will call an error function
that must be supplied by the user-supplied C
code; this is so that the error handling activity
can be handled in a manner appropriate to the
current implementation.

The declaration for the error function to be pro-
vided by the user-supplied C code is defined as
the <SM_NAME>_State_Machine_Error function
in Figure 2.

User-supplied code may also call the error func-
tion, but if the err_id used matches the errors
defined in Table 1 then the errtext and addi-
tional parameters must additionally match.

In the definition referenced, <SM_NAME> is re-
placed with the name of the state machine as-
sociated with this error (allowing separate er-
ror handlers for each state machine defined) and
<SM_OBJ> and <SM_EVT> are replaced by the cor-
responding C type specifications from the simi-
larly named SMG directives.

11

The errtext describes the error and may be fol-
lowed by arguments to be used in printf-style
format codes.

The err_id is an identifier value associated with
this error. The errtext and the type and se-
quence of arguments for a specific err_id will
never change, so error routines are free to key
on the err_id value to perform specific actions
as defined in Table 1.

3. When C code within the user-supplied soft-
ware wishes to deliver an event to the state
machine and therefore activate it to process
that event to completion, it should call the
<SM_NAME>_State_Machine_Event function as
defined in Figure 2.

In the definition referenced, <SM_NAME> is re-
placed with the name of the state machine
to which the event is to be delivered. The
sm_obj and sm_evt arguments must be the
appropriate entities with types defined by the
SM_OBJ and SM_EVT SMG directives, re-
spectively. The event_code must be of type
<SM_NAME>_event_t, where that type (and the
actual event codes) are defined in the include
header file output by the smg preprocessor.

4. For state machines which are not initialized at
instantiation time (i.e. which do not contain
an INIT_STATE directive) the state machine
must be explicitly initialized before any events
are delivered to the state machine. A state
machine must be explicitly initialized by call-
ing the <SM_NAME>_State_Machine_Init func-
tion as defined in Figure 2.

5. The .sm file should contain a
“#include "<FILE>_smdefs.h" C state-
ment, where <FILE> is the same as the .sm
input filename (without the .sm extension).
This header file is automatically generated by
SMG and will define the states, events, and
various SMG entry points in C-syntax code.

This header file must be included into the .sm file
at a minimum, and may be included into other
.sm or .c/.h files in the module as needed. Its

inclusion must be explicit by the developer to
insure that the inclusion occurs at the right point
in the code (e.g. following any other definitions
needed by the SM definitions, but prior to actual
usage of those definitions in the user-supplied
code).

6. The _smdefs.h inclusion in requirement 5 must
be preceeded by any type definitions required by
code declarations in the _smdefs.h file, includ-
ing the SM_OBJ and SM_EVT types.

7. The SMG code assumes that all external calls
to <SM_NAME>_State_Machine_Event are ex-
ternally synchronized and otherwise protected
against multi-thread re-entrancy.

8. Code segments are output in the order in which
they are specified for TRANS+ code. All pre-state
TRANS+ code preceeds normal pre-state code,
and all post-state TRANS+ code follows normal
post-state code.

5 SMG Usage

The SMG preprocessor is invoked from the command
line prior to the C file compilation. It will produce a
number of output files: a C code file (.c), a header
include file (.h), a GraphViz dot input file (.dot),
and a GraphViz output file in PostScript, GIF, MIF
(Framemaker), or HTML imagemap format.

The SMG preprocessor may be invoked with no
arguments or with the “-h” flag to obtain explicit
usage information.

5.1 SMG Command Line Arguments

The following describes the command line arguments
for SMG in more explicit detail than than provided
by run-time help.

-h Displays the usage/help information. Usually
displayed on a command-line parsing error as
well.

-i Passes all generated .c and .h files through the
indent program to improve readability. The cur-
rent user environment provides the appropriate

12

void <SM_NAME>_State_Machine_Error(<SM_OBJ> _sm_obj,
<SM_EVT> _sm_evt,
int err_id,
char *errtext, ...);

void <SM_NAME>_State_Machine_Event(sm_obj, sm_evt, event_code);

void <SM_NAME>_State_Machine_Init(sm_obj, initial_state);

Figure 2: State Machine C-code Interface Declarations

Table 1: State Machine Error function err_id and errtext values
err_id errtext

0 unused
1 Undefined State Transition (State <#>=<N>: <D>), (Event <#>=<N>: <D>)
2 Invalid STATE!! (<#>=<N>: <D>)
3 Invalid STATE/EVENT!! (State <#>=<N>: <D>) (Event <#>=<N>: <D>)

<#> is the numeric value for the item in question
<N> is the corresponding name string
<D> is the corresponding description string

input to indent; no indent parameters are passed
on the command line used to invoke indent. The
indent application must be present in the current
PATH. Note that some indent operations may
cause the line numbers reported during compila-
tion to be skewed; in particular, the -cdb (GNU
indent) option is evil.

-v Verbose output. Enables various informational
and progress messages. If verbose output is not
enabled, the SMG preprocessor will not generate
any messages to stdout.

-D Defer tagged code event generation. As de-
scribed above, a TRANS directive may specify
one or more tags identifying code that is to be
generated for handling that event, and that code
may contain keywords of the type “_#<event>”
or “_/<event>” where <event> is a valid event
for this state machine. Normally, the keyword
will be directly replaced with appropriate code
to generate the specified event, but if the -D flag
is used, the code to generate the event will be

placed at the end of the TRANS code segments.

-N Nested switch statements for state machine han-
dling. When an event occurs, there are two el-
ements which are used to determine the appro-
priate handling of that event: the event code it-
self and the current state. By default, these two
values are combined and a singe C switch/case
statement is generated to dispatch to the appro-
priate handling. When the -N flag is utilized, one
C switch/case statement is used to scan for the
current state, and then within the case handling
for that state, another C switch/case statement
is used to scan for the event_code.

-T Trace code output. When this flag is specified,
state machine trace operations are embedded in
the generated code. This is typically used for
debugging and may or may not be specified for
“production” versions of the code. More infor-
mation on tracing is provided in Section 5.3.

-e Enum declarations. By default, the
XXX_smdefs.h file generated uses #define

13

statements for states and events. When the -e
flag is specified, enum statements are generated
instead.

-b Bounds checking. Adds code to the state ma-
chine event handler to validate the event value
for validity as an actual event code.

-l Suppress #line directives. By default, the gen-
erated code contains “#line” C precompiler di-
rectives that reference the input SMG file. This
greatly aids in debugging as the compilation
stage will usually reference the correct location
in the input SMG file rather than the generated
(and therefore somewhat unfamiliar) C file. By
specifying the -l flag, these directives are sup-
pressed and any C compiler messages will refer
to the .c file instead; this may be useful for de-
bugging errors that are not apparent in the SMG
input file directly.

-G GIF diagram output format. Specifies that the
state machine diagram that is generated is to be
encoded in GIF format.

-P Postscript diagram output format. Specifies that
the state machine diagram that is generated is
to be encoded in Postscript format. This is the
default.

-M MIF diagram output format. Specifies that the
state machine diagram that is generated is to be
encoded in MIF format (Adobe FrameMaker’s
Interchange Format).

-W Web imap diagram output format. Specifes that
the state machine diagram that is generated is
to be encoded as an html image map suitable for
use on a Web page.

5.2 Support Functions

The SMG utility will automatically gener-
ate a set of support functions in addition to
the primary <name>_State_Machine_Init and
<name>_State_Machine_Event functions. These
support functions may be used by the user’s event-
specific code or other code to obtain user-readable

names and descriptions of the States and Events
defined in the .sm file.

The following support functions (defined in Fig-
ure 3) are generated automatically by SMG:

<name>_State_Name This function converts its
state value argument into a character string
name for that state.

<name>_State_Desc This function converts its
state value argument into a character string de-
scription for that state.

<name>_Event_Name This function converts its
event value argument into a character string
name for that event.

<name>_Event_Desc This function converts its
event value argument into a character string de-
scription for that event.

5.3 Run-Time Tracing

When the SMG utility is invoked with the -T ar-
gument, the generated SMG code contains run-time
tracing output. By default, this tracing output causes
information to be printed to stderr regarding the var-
ious events and state changes that occur when the
SMG-generated state machine operates.

Some environments do not provide fprintf access to
a stderr output stream, and other situations might
desire custom control over the tracing output. These
scenarios can be handled by overriding the default
tracing code generated. The overrides are specified
in the form of a set of #define statements in the
.sm file. These #define statements should appear
fairly early in the .sm file, and must appear before
the inclusion of the xxx_smdefs.h file.

The following macros should be overridden with
specific #define statements to modify the tracing be-
havior:

SM_TRACE This macro should be defined to signal
an override of the default tracing functionality
generated by SMG. This macro does not need to
be set to a specific value or translation: it simply
needs to be defined.

14

char *<name>_State_Name(<name>_state_t state);
char *<name>_State_Desc(<name>_state_t state);
char *<name>_Event_Name(<name>_event_t event);
char *<name>_Event_Desc(<name)_event_t event);

Figure 3: SMG Auto-generated Support Functions

SM_TRACE_INIT This macro is called when the state
machine is initialized. This macro can be used
to trace the initialization event and the initial
state of the state machine. The parameters for
this macro are:

Obj The _/OBJ variable for the state machine
context. (Type: declared by the SM_OBJ
directive).

Evt The _/EVT variable for this event. (Type:
declared by the SM_EVT directive).

SM_Name The SM_NAME of the state machine.
(Type: char *).

InitState The initial state value.
The <name>_State_Name and
<name>_State_Desc support functions
may be called to translate the state
value into an identifying string and cor-
responding description if desired. (Type:
<name>_state_t)

SM_TRACE_EVENT This macro is called when an
event occurs. This macro should identify the
event which occurred and the new state of the
State Machine. The parameters for this macro
are:

Obj The _/OBJ variable for the state machine
context. (Type: declared by the SM_OBJ
directive).

Evt The _/EVT variable for this event. (Type:
declared by the SM_EVT directive).

SMNAME The SM_NAME of the state machine.
(Type: char *).

Event The event value. The
<name>_Event_Name and
<name>_Event_Desc support functions

may be called to translate the event value
into an identifying string and correspond-
ing description if desired. The new state
value is available from _/OBJ->sm_state
and it may likewise be converted to readble
strings by the corresponding support
functions. (Type: <name>_event_t)

SM_TRACE_EXP_EV This macro is called when an ex-
pected event occurs (i.e. an event transition de-
clared with a TRANS= directive). This macro
is otherwise identical to the SM_TRACE_EVENT
macro, including the arguments, but this macro
may wish to differentiate the occurrence of an
expected event from the occurence of a normal
event in the generated trace output.

6 SMG Libraries

An interesting and useful extension of SMG usage
is as a new method for defining interface libraries,
especially for asynchronous event–driven interfaces.
SMG features that make it very useful in working
with event–driven architectures. Event–driven archi-
tectures are often asynchronous by nature and lend
themselves to state machine management techniques,
but SMG has the ability to specify entry points and
setup code for those asynchronous entry points as an
SMG Library that can be included into the applica-
tions SMG specification using the SM_INCL directive.

6.1 Event Interface Background

For example, consider a hypothetical windowing en-
vironment called ”Y”. Applications written for Y-
windows must specify functions that are called when
certain events occur within their window. The fol-

15

lowing events must be handled by a Y-windows ap-
plication:

• Mouse click, Button 1

• Mouse click, Button 2

• Keyboard key entered

• Expose event (the window has become visible)

• Iconify event (the window should be iconicized)

For a C development environment, there would be
a Y-windows header file that defined these events and
an event vector structure that would have to be ini-
tialized by the application:

typedef struct y_app_vtable {
void *y_mouse_b1(int x, int y);
// tricky: arguments switched:
void *y_mouse_b2(int y, int x);
void *y_key_entered(char keyval);
void *y_expose(void);
void *y_iconicize(void);

} y_app_vtable_t;

int y_app_mainloop(void);

The Y-windows application would then need to de-
fine functions to be entered into the y_app_vtable_t
to handle the various events. The application would
also need to call y_app_mainloop in its main routine
after initializing so that Y-windows could begin pro-
cessing events and passing them to the application’s
handling functions.

The inconvenience of this methodology is that the
process of creating the entry functions is a tedious,
mechanical process that each Y-windows application
must perform. This is exacerbated by the fact that
the first thing that each entry point must do is check
the global state to see how the event should be han-
dled. For example, myapp.c would contain the fol-
lowing minimum code irrespective of the specifics of
the application:

void myapp_mouse_b1(int x, int y) {
switch (app_state) {
case STATE_1:

<some code>
break;

case STATE_2:
<some code>
break;
:

}
}

void myapp_mouse_b2(int y, int x) {
switch (app_state) {
case STATE_1:

<some code>
break;

case STATE_2:
<some code>
break;
:

}
}

void myapp_key_entered(char keyval) {
// same as above...

}

void myapp_exposed(void) {
// same as above...

}

void myapp_iconicize(void) {
// same as above...

}

Instead of exposing the developer to the tedium
of manually writing this template an SMG Li-
brary can be provided for Y-windows. This also
removes the risk of entering it incorrectly, (eg.
as void myapp_mouse_b1(int y, int x) which is
syntactically but not functionally correct).

16

6.2 SMG Library Implementation

An SMG Library is nothing more than an SMG file
that should be SM_INCL included into the main appli-
cation and which defines the events and entry points
for those events. This library can be developed once
and re-used by all applications that operate within
that event-driven architecture. The application de-
veloper is freed to focus on the actual functionality
of the application in response to the events rather
than the mechanics of program infrastructure.

A subset of the example above can be used to show
how the introduction of an SMG Library changes the
development. The initial introduction of the SMG
Library generated state machine would replace all the
switch statements in the example above into calls to
the myapp_State_Machine_Event function, thereby
saving some of the superfluous repetition, but also
making the entry points mere shells:

void myapp_iconicize(void) {
myapp_State_Machine_Event(&myapp_global,

<event_obj>,
Iconicize_E);

}

Because the state machine function will vector the
code to the proper handling code, the entry point
function needs to do little more than marshall the
entry points arguments into the SM_EVT object and
call the SMG’s state machine function.

In the revised example, it is assumed that
myapp_global is a global structure whose type was
reported to SMG by the SM_OBJ directive and that
that structure contains the sm_state field, and it is
also assumed that Iconicize_E is the name of an
event declared with the EVENT directive (or implic-
itly as part of a TRANS directive).

The only yet-to-be determined portion of the re-
vised code is the <event_obj> specification. This ref-
erence must be for a variable of a specific type that is
useable to sufficiently represent the event in the state-
machine-invoked code. For the myapp_iconicize en-
try point, there are no parameters and therefore the
event is fully represented just by its presence. How-
ever, other events—such as the myapp_mouse_b1—
have associated parameters that will need to be avail-

able to the event handling code. Therefore, the fol-
lowing event representation structure is defined in
myapp and declared with the SM_EVT directive:

typedef union {
struct {

int x;
int y;

} mouse_coords;
char keyval;

} myapp_y_event_t;

SM_EVT myapp_y_event_t *

Now all that’s needed is to pass a structure of that
type to the SMG State Machine Event handler rou-
tine. There are a couple of choices as to where to
obtain the structure:

• From the local stack. This has the implicit re-
quirement that the event handling code com-
pletely handles the event before returning since
the stack copy will be gone when that return
happens and the event entry point is exited.
This is not usually recommended, but it can be
used in simple situations.

• From memory allocation. This is probably the
most convenient method, but it does mean that
the event handling might be delayed by mem-
ory allocation time and it also means that the
event handling code must deallocate the event
structure when it has been fully handled.

• From an event object pool. This uses a pre-
allocated pool of structures which has the ad-
vantages (fast allocation) and disadvantages (re-
source limitations) of pool structures. The event
handling code should return the event structure
to the pool when finished with it.

The example shown in Figure 4 will use the simple
memory allocation method. Also note that although
all events must allocate the structure, different events
must initialize the structure in a different manner and
some events not at all, therefore a global macro can
be used to perform the allocation.

17

#define INIT_EVT myapp_y_event_t *evt = (void) malloc(sizeof(myapp_y_event_t)); \
if (!evt) return;

void myapp_mouse_b1(int x, int y) {
INIT_EVT;
evt->mouse_coords.x = x;
evt->mouse_coords.y = y;
myapp_State_Machine_Event(&myapp_global, evt, Mouse_B1);

}

void myapp_iconicize(void) {
INIT_EVT;
myapp_State_Machine_Event(&myapp_global, evt, Iconicize_E);

}

Figure 4: Event Entry Actions

Now that the example is functionally correct again,
all that remains is to recognize that the only variable
part is the event encapsulation/initialization code;
SMG can be tasked to create the invariant parts inde-
pendently of the application. Furthermore the event
object can be defined entirely by the SMG Library
since it only needs to contain the explicit arguments
defined by the asynchronous API. The SMG Library
can define EVENT directives with entry_code por-
tions that specify the correct functions and argu-
ments for the event, and with start_code portions
that perform the per-entry-point event structure ini-
tialization.

The code in Figures 5, and 6 show how this is done
by implementing the SMG Y-windows Library.

Notice that this library contains SMG directives
but that it does not specify a complete state ma-
chine...it does not even name the state machine it-
self. The directives defined in the library are meant
to be embedded in the user’s application state ma-
chine definition along with the actual event handling
code. To continue the previous example, code for a
trivial Y-windows application is shown in the follow-
ing Figures:

• Figure 7 shows the application’s declarations

• Figure 8 shows the event-specific routines

• Figure 9 shows the state machine transitions

• Figure 10 shows the main routines

The code shown in these figures can be concate-
nated in order into a .sm source file and handled
directly by SMG and a C compiler to generate the
sample application.

6.3 Library Synthesized Events

Some types of entry points are passed a parame-
ter which further defines the actual event which oc-
curred. For example, instead of y_mouse_b1 and
y_mouse_b2, the Y-windows system could have just
defined:

typedef enum { Mouse_B1, Mouse_B2 } MButton_t;

void *y_mouse(MButton_t button, int x, int y);

In cases like this, the event-specific handling must
usually be different based on the actual event which
occurred as indicated by the “sub-event” parameter.
Rather than require the developer to perform this
additional selection based on the sub-event, the SMG
Library often provides a synthesized event for each
of the sub-event types. In this example this means
that the SMG Y-Windows Library would probably

18

CODE_{ yw_mouse_b1_decl
void yw_mouse_b1_e (int x, int y)

CODE_}
CODE_{ yw_mouse_b2_decl

void yw_mouse_bw_e (int y, int x)
CODE_}
CODE yw_key_entered_decl void yw_key_entered_e(char keyval)
CODE yw_expose_decl void yw_expose_e(void)
CODE yw_iconicize_decl void yw_iconicize_e(void)

y_app_vtable_t yw_entrypoints = {
yw_mouse_b1_e,
yw_mouse_b2_e,
yw_key_entered_e,
yw_expose_e,
yw_iconicize_e

};

Figure 5: Y-windows SMG Library declarations

still provide y_mouse_b1 and y_mouse_b2 events even
though the actual event delivered to the application
was simply a y_mouse event.

6.4 SMG Library Requirements

Using an SMG LIbrary for code development means
that the normal SMG development requirements ap-
ply plus those specific to the SMG Library. More
specifically, the SMG Library must define for the
user:

1. the names of the events (including synthesized
events),

2. the name and definition for the event structure,
and

3. the names of the event and object variables de-
clared by the entry points for the user’s event
handling code.

7 SMG Examples

Please see the Examples directory of the SMG dis-
tribution for examples and discussions of the use of

most of the state machine directives and options in
fairly simple programs.

7.1 File Example 1

This example shows a simple example of a menu-
driven file processing application that has an under-
specified state machine.

The example is located in the Examples/file_ex1
subdirectory of the SMG distribution. The following
sequence of events may be used to work with this
example:

...
C code
SM directives...

.sm
?�� ��SMG

���xxx_smdefs.h?.cHHj.dot
XXXz.pml�� ��CCN 	

.exe?
�� ��GraphViz?

.ps?
�� ��Spin?
Verification

Report?

7.1.1 Building the Example

In the following example, the commands entered are
shown in italics and the output of the utilities is
shown in this font.

19

Examples/file_ex1/file_ex1.sm
Examples/file_ex1/file_ex1.sm
Examples/file_ex1/file_ex1.log
Examples/file_ex1/file_ex1_smdefs.h
Examples/file_ex1/file_ex1.c
Examples/file_ex1/file_ex1S.dot
Examples/file_ex1/file_ex1.pml
Examples/file_ex1/file_ex1S.ps

$ smg -viTP file_ex1
$ gcc -o file_ex1 file_ex1.c

Once built, it may be run by executing:

$ file_ex1

In addition to the executable, the source files
(file_ex1.c and file_ex1_smdefs.h) may be ex-
amined. There is also a Promela model generated
(file_ex1.pml) and a graphical representation of the
state machine (file_ex1S.ps) based on GraphViz
directives (file_ex1S.dot).

Examining the graphical representation, it
can easily be observed that the state ma-
chine is underspecified by the presence of the
UNDEFINED_TRANSITION_RESULT state. This can
be confirmed by performing a sequence of menu
operations with the executable that lead to this error
state and observing the output dynamically.

7.2 Unmorse Example

This example shows the use of an SMG-generated
state machine for translating from Morse Code back
to plain-text.

The example is located in the Examples/unmorse
subdirectory of the SMG distribution. The following
sequence of events may be used to work with this
example:

...
C code
SM directives...

.sm
?�� ��SMG

���xxx_smdefs.h?.cHHj.dot
XXXz.pml�� ��CCN 	

.exe?
�� ��GraphViz?

.ps?
�� ��Spin?
Verification

Report?

7.2.1 Building the Example

In the following example, the commands entered are
shown in italics and the output of the utilities is
shown in this font.

$ smg -viTP unmorse
$ gcc -o unmorse unmorse.c

Once built, it may be run by executing:

$ unmorse ’- - -..-. .---- .-.-.-’
Translation: TEST/1.
$

In addition to the executable, the source files
(unmorse.c and unmorse_smdefs.h) may be exam-
ined. There is also a Promela model generated
(unmorse.pml) and a graphical representation of the
state machine (unmorseS.ps) based on GraphViz
directives (unmorseS.dot).

8 SMG Maintenance

8.1 Dependencies

8.1.1 Python

SMG itself is written in Python code and therefore
the system must have Python available. The initial
version of Python used for SMG development was
1.5.2. Subsequent versions were maintained using
Python 2.2; SMG should still run under Python 1.5.2
although this has not been specifically verified.

Python is available from:
http://www.python.org/.

8.1.2 GraphViz

The GraphViz utility has been developed by AT&T
Research and converts a text description of a graph
into a representational Postscript figure. It can alter-
natively produce GIF, MIF or Web imap figures as
well. The graphical output is very helpful in analyz-
ing the resulting state machine.

SMG outputs a description of the state machine
itself to a .dot file, which is then passed to GraphViz
to generate the desired graphical output. The .dot
file itself is not intended for analysis.

The GraphViz distribution version
used for SMG development was 1.5.
The GraphViz package is available at:
http://www.research.att.com/sw/tools/graphviz

8.1.3 Spin

Promela and the Spin utility are independently de-
veloped by AT&T and are not related to the SMG

20

Examples/file_ex1/file_ex1S.ps
Examples/unmorse/unmorse.sm
Examples/unmorse/unmorse.sm
Examples/unmorse/unmorse.log
Examples/unmorse/unmorse_smdefs.h
Examples/unmorse/unmorse.c
Examples/unmorse/unmorseS.dot
Examples/unmorse/unmorse.pml
Examples/unmorse/unmorseS.ps
Examples/unmorse/unmorseS.ps
http://www.python.org/
http://www.research.att.com/sw/tools/graphviz

preprocessor. Spin is available at: http://netlib.bell-
labs.com/netlib/spin/whatispin.html

8.1.4 Interactions

The SMG preprocessor is an independently developed
utility and is not related to the GraphViz program
developed by AT&T nor the Python language and
interpreter developed by Guido van Rossum. Python
is available from the above Web site. The GraphViz
program is available independently from AT&T un-
der their license.

8.2 SMG License

Copyright (c) 2000-2001, Kevin Quick All rights re-
served.

Redistribution and use in source and binary forms,
with or without modification, are permitted provided
that the conditions are met:

• Redistributions of source code must retain the
above copyright notice, this list of conditions,
and the following disclaimer.

• Redistributions in binary form must reproduce
the above copyright notice, this list of conditions
and the following disclaimers in the documenta-
tion and/or other materials provided with the
distribution.

• Neither the name of Kevin Quick nor the names
of other contributors may be used to endorse
or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE
COPYRIGHT HOLDERS AND CONTRIBUTORS
”AS IS,” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE COPYRIGHT HOLD-
ERS OR ANY CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOW-
EVER CAUSED AND ON ANY THEORY OF LIA-
BILITY, WHETHER IN CONTRACT, STRICT LI-
ABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

8.3 SMG Change Log

v1.7.1 • [Internal] Created graphviz module and
modified smg_figure to use it.

v1.7 • Added documentation for SM_ELSE (not
new to SMG, just not doc’d).

• Added path search for SM_INCL

• Added optional version parameter for
SM_INCL

• [Documentation:]

– Document updates: clarification on
<xxx> keyword validity.

– Cleanup of existing examples

• [Documentation:]

– Documented SMG Libraries
– Documented Support and Tracing

Functions
– Documentation rearranged somewhat

v1.6 • Minor updates. Preparation for SF file re-
lease.

• Addition of SMG_SYNTAX_A syntax version
context definition.

v1.5 • Added sm-mode.el for Emacs syntax
highlighting and indenting controls.

• Added handling for cascaded sub-events.

• Added validation to detect terminal states,
source states, and erroneous combinations:
non-INIT_STATE source states, and orphan
states (no entries or exits)

21

http://netlib.bell-labs.com/netlib/spin/whatispin.html
http://netlib.bell-labs.com/netlib/spin/whatispin.html

• Added -b flag for bounds checking incom-
ing events. This also changed the values
(and ordering) for states and events in the
smdefs.h file.

v1.4 • Added the INIT_STATE for instantiation-
initialized state machines.

• Modified state machine diagrams for visual
identification of key states (initial states, fi-
nal states, and the undefined transition er-
ror state).

• Expanded examples to: file_ex1,
file_ex2, file_ex3, and file_ex4.

v1.3 • Added PROMELA_{ and PROMELA_} and
output of Promela code for spin verifica-
tion.

• Updated xx_State_Machine_Error func-
tion to include the err_id for identifying
and processing specific error numbers.

v1.2 • Added clustering of nodes in figures

v1.1 • Added SM_DEF , SM_IF , and SM_END
statements for conditional inclusion.

• Internal code cleanup primarily focused on:

• Significant Postscript output cleanup and
labelling.

v1.0.2 • Better tracking of source .sm file, espe-
cially for SM_INCL directives

• Switch to “_/” instead of “_#” as the SMG
identification prefix. Still recognize the old,
but the new one prevents macro argument
replacement errors.

• Updated SM_TRACE for explicit macros for
each type of trace

v1.0.1 • Added SM_TRACE and “-T” command
line option (tracing)

• Added “-l” command line option (#line
output suppression)

• Added version number and output version
on help line

• Added _#SM_NAME code keyword

• Added internal event generation deferral for
_#<EVENT>

22

typedef union {
struct {

int x;
int y;

} mouse_coords;
char keyval;

} yw_event_t;

SM_EVT yw_event_t *

EVENT Mouse_B1_E yw_mouse_b1_decl yw_mouse_b1_prep
EVENT Mouse_B2_E yw_mouse_b2_decl yw_mouse_b2_prep
EVENT Key_Entered_E yw_key_entered_decl yw_key_entered_prep
EVENT Expose_E yw_expose_decl yw_noarg_prep
EVENT Iconicize_E yw_iconicize_decl yw_noarg_prep

CODE_{ yw_mouse_b1_prep
// Standard event initialization; defined in CODE tag for _/xxx subst.
#define INIT_EVT yw_event_t *evt; \

evt = (void) malloc(sizeof(yw_event_t)); \
if (!evt) return; \
_/EVT = evt; \
_/OBJ = &myapp_global;

INIT_EVT;
evt->mouse_coords.x = x;
evt->mouse_coords.y = y;

CODE_}

CODE_{ yw_mouse_b2_prep
INIT_EVT;
evt->mouse_coords.x = x;
evt->mouse_coords.y = y;

CODE_}

CODE_{ yw_key_entered_prep
INIT_EVT;
evt->keyval = keyval;

CODE_}

CODE yw_noarg_prep INIT_EVT;

Figure 6: Y-Windows SMG Library Event Management

23

#include <stdio.h>
#include <ywindows.h>
#include "myapp_smdefs.h"

SM_NAME myapp

struct myapp_gstruct {
sm_state_t sm_state;

} myapp_global;
SM_OBJ struct myapp_gstruct *

SM_INCL Y_Windows.sm

Figure 7: Y-windows Application declarations

CODE_{ draw_window
[user code here]
free(_/EVT);

CODE_}

CODE_{ draw_icon
[user code here]
free(_/EVT);

CODE_}

CODE_{ add_char
y_window.text.add(_/EVT->keyval);
free(_/EVT);

CODE_}

Figure 8: Y-windows Application event handling routines

24

INIT_STATE NotDisplayed
TRANS NotDisplayed Expose_E Displayed draw_window
TRANS Displayed Expose_E - draw_window
TRANS Iconicized Expose_E Displayed draw_window

TRANS Displayed Iconicize_E Iconicized draw_icon
TRANS Displayed Key_Entered_E - add_char
TRANS Iconicized Key_Entered_E -

TRANS Displayed Mouse_B1_E -
TRANS Iconicized Mouse_B1_E Displayed draw_window
TRANS Iconicized Mouse_B2_E -
TRANS Displayed Mouse_B2_E Iconicized draw_icon

Figure 9: Y-windows Application state machine transitions

int main(int argc, char **argv) {
myapp_State_Machine_Init(XXX);
y_window_create(...);
...
y_app_mainloop();

}

Figure 10: Y-windows Application main code

25

	Background
	Tunnel Vision
	Asynchronous Event Handling
	EDSM Methodology

	Non-blocking Operations

	The SMG Solution
	Visual Analysis
	Functional Verification

	SMG Development Cycle
	C Data Structures and Functions

	SMG Directives Overview
	Common SMG Directives
	SMG Directive Keywords
	SMG Wildcards
	SMG Syntax Version

	SMG Specification Requirements
	SMG Usage
	SMG Command Line Arguments
	Support Functions
	Run-Time Tracing

	SMG Libraries
	Event Interface Background
	SMG Library Implementation
	Library Synthesized Events
	SMG Library Requirements

	SMG Examples
	File Example 1
	Building the Example

	Unmorse Example
	Building the Example

	SMG Maintenance
	Dependencies
	Python
	GraphViz
	Spin
	Interactions

	SMG License
	SMG Change Log

